• Latest
  • Trending
  • All
Structural determination of complex anion materials

Structural determination of complex anion materials

October 29, 2022
Oracle Analytics Cloud Backup: Keep Your Data Safe and Secure

Oracle Analytics Cloud Backup: Keep Your Data Safe and Secure

January 7, 2023
Veeam Backup Cloud Server - The Best for Enterprises

Veeam Backup Cloud Server – The Best for Enterprises

December 31, 2022
Domo marketing analytics

The Domo Marketing Analytics Review: The Most Comprehensive and Powerful Tool Available for Email Marketing

December 30, 2022
What is iCloud Backup? and How to Backup iCloud Fast and Simple

What is iCloud Backup? and How to Backup iCloud Fast and Simple

December 13, 2022
advantages of marketing analytics

The Fantastic Advantages Of Marketing Analytics

December 9, 2022
About Cloud Server and How to Backup Cloud Server 

About Cloud Server and How to Backup Cloud Server 

December 6, 2022
Big Data or Cloud Computing

Big Data or Cloud Computing: Which is Better?

December 6, 2022
Astronomers find cosmic rays driving galaxy’s winds

Astronomers find cosmic rays driving galaxy’s winds

December 5, 2022
Superaerophobic polyethyleneimine hydrogels improve electrochemical hydrogen production by promoting bubble detachment

Superaerophobic polyethyleneimine hydrogels improve electrochemical hydrogen production by promoting bubble detachment

December 4, 2022
Synthetic energy metabolism enables twin engine for cell

Synthetic energy metabolism enables twin engine for cell

December 4, 2022
Target names chief digital, product officer

Target names chief digital, product officer

December 3, 2022
Kohl’s joins early holiday promos trend with October deals

Kohl’s joins early holiday promos trend with October deals

December 3, 2022
Wednesday, February 1, 2023
  • Login
Infodoc.info
  • Home
  • Astronomy & Space
  • Biology
  • Chemistry
  • DTC
  • Marketing
  • Technology
  • Stories
    • Guides
    • How Tos
    • Apple
No Result
View All Result
  • Home
  • Astronomy & Space
  • Biology
  • Chemistry
  • DTC
  • Marketing
  • Technology
  • Stories
    • Guides
    • How Tos
    • Apple
No Result
View All Result
Infodoc.info
No Result
View All Result

Structural determination of complex anion materials

by Megusta
October 29, 2022
in Chemistry
0
Structural determination of complex anion materials

Structural determination of complex anion materials
Waveform (left) and crystal structure model (right) obtained by nuclear magnetic resonance experiments of the composite anion material Pb2Ti4O9F2. The two peaks appearing in the waveform demonstrate the two types of atomic positions are selectively occupied when some of the oxygen in the original solid is replaced by fluorine. Using density functional theory-based calculations, the researchers explained the preference of fluorine occupation on these sites. Credit: Ryo Maezono from JAIST

Solid-state materials are widely used in semiconductors, phosphors, and batteries, and have become an indispensable part of modern life. Substitution of elements in these complex composite materials is a popular technique to achieve desired material properties. Various properties can be achieved by partially replacing oxygen in the oxide solid with another element such as fluorine (composite anion technology).

However, to tune material properties by substitution, it is important to know the sites in the material where the element is substituted. If the substitution site is near the highly reactive site in the solid, it favors the reaction that develops a certain material property.

To this end, a team of researchers led by Professor Ryo Maezono, from the Japan Advanced Institute of Science and Technology, developed an analytical tool to investigate the ordering of fluorine in lead titanium oxyfluoride, a complex composite material.

In a recent study published in Dalton Transactions on September 23, 2022, the researchers report developing an interdisciplinary method for clarifying the positions of substitution atoms in complex composite materials. To overcome the limitation of determining the sites of substitution by experimental techniques alone, the team employed advanced computational simulations. As Professor Maezono explains, “We have established a method for clarifying the positions of substitution atoms in solid materials, which cannot be clarified only by experiments, by computer simulation.”

The researchers used a simulation called “first-principles calculation” (density functional theory) to analyze the experimental results and determine the element substitution positions in the composite anion material. The team succeeded in identifying the element substitution positions for composite anion materials where some of the oxygen atoms are replaced by fluorine.

See also  New potential from one-pot, one-step polymer synthesis
Powered by Inline Related Posts

Simulations were performed using first-principles calculations for a crystal structure model with various element substitution positions, and each energy value was compared. The results show that the substitution position that gives the lowest energy value is the likely position for substitution. Further simulations were performed using the crystal structure model with the substitution positions determined in this way and results consistent with the data observed in various experiments were obtained.

This analysis shows that in lead titanium oxyfluoride, the fluorine atoms predominantly occupy two of the six available inequivalent sites in a ratio of 73:27. The researchers explained the preference of fluorine occupation on these sites using density functional theory-based calculations that matched the experimentally observed occupation ratio. They further explained that the lead atom valence electrons could potentially determine the majority and minority fluorine occupation sites.

Using supercomputing facilities, faster simulations are now able to determine which substitution position has the least discrepancy with the experiment. This approach complements experimental observations to reveal the mechanism of anion ordering in complex materials. This result makes it possible to provide a powerful analytical tool in the field of material development, in which atomic-level substitution is performed on solid materials and their properties are tuned.

Professor Maezono concludes, “The methodology developed in this work can accelerate the development of mixed-anion materials. Mixed-anion technique could realize better materials than the conventional mono-anion materials in semiconductor spintronics industries.”

Megusta

Megusta

No Result
View All Result

Categories

  • Apple
  • Astronomy & Space
  • Biology
  • Chemistry
  • DTC
  • Guides
  • How Tos
  • Marketing
  • Technology
  • Uncategorized
Infodoc.info

Copyright © 2022 Infodoc.info. All right reserved.

Navigate Site

  • About Us
  • Contact
  • Disclaimers
  • Privacy Policy
  • Terms and Conditons

Follow Us

No Result
View All Result
  • Home
  • Astronomy & Space
  • Biology
  • Chemistry
  • DTC
  • Marketing
  • Technology
  • Stories
    • Guides
    • How Tos
    • Apple

Copyright © 2022 Infodoc.info. All right reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In