• Latest
  • Trending
  • All
New experimental method IR-DOSY reveals molecular structure and size

New experimental method IR-DOSY reveals molecular structure and size

October 29, 2022
Cloud-based government solutions

5 Benefits Of Cloud-Based Goverment Solutions

September 13, 2023
Cloud-based healthcare solutions

Cloud-based healthcare solutions: Important point definition

September 5, 2023
Cloud-based financial solutions

Cloud-based financial solutions: 8 Fascinating Benefits

August 25, 2023
Cloud-based supply chain solutions

Benefits of a Cloud-based Supply Chain Solutions

August 16, 2023
Cloud-based customer service solutions

Cloud-based Customer Service Solutions: Useful Reviews

August 8, 2023
Cloud-based marketing solutions

5 best Cloud-based marketing solutions

July 29, 2023
Best cloud-based inventory management solutions

Best cloud-based inventory management solutions

July 20, 2023
Cloud-based project management solutions best benefits

Cloud-based project management solutions: best benefits

July 18, 2023
Cloud-based CRM solutions best overview

Cloud-based CRM solutions: best overview

July 14, 2023
All best about Cloud-based ERP solutions

All best about Cloud-based ERP solutions

July 12, 2023
What is cloud integration solutions Best introduce

What is cloud integration solutions: Best introduce

July 11, 2023
The best cloud analytics solutions

The best cloud analytics solutions

July 6, 2023
Thursday, September 28, 2023
  • Login
Infodoc.info
  • Home
  • Astronomy & Space
  • Biology
  • Chemistry
  • DTC
  • Marketing
  • Technology
  • Stories
    • Guides
    • How Tos
    • Apple
No Result
View All Result
  • Home
  • Astronomy & Space
  • Biology
  • Chemistry
  • DTC
  • Marketing
  • Technology
  • Stories
    • Guides
    • How Tos
    • Apple
No Result
View All Result
Infodoc.info
No Result
View All Result

New experimental method IR-DOSY reveals molecular structure and size

by Megusta
October 29, 2022
in Chemistry
0
New experimental method IR-DOSY reveals molecular structure and size

New experimental method IR-DOSY reveals molecular structure and size
IR-DOSY spectra of a mixture of acetone and dialanine, showing which IR peak belongs to which compound. Credit: HIMS

Researchers at the University of Amsterdam have developed a novel approach to infrared spectroscopy that enables simultaneous characterization of molecular structure and size. Called Infrared Diffusion-Ordered Spectroscopy (IR-DOSY), the method nicely separates molecules with different sizes into distinct sets of IR peaks.

Reporting on IR-DOSY in a paper that has just been accepted by Angewandte Chemie, the researchers foresee analytical applications in fields as diverse as proteins, polymers, pharmaceuticals and biomedicine. They are currently developing a first version of a practical chemical probe implementing the IR-DOSY concept.

Infrared (IR) spectroscopy is an important workhorse in the analysis of chemical compounds. It helps to identify molecules based on their functional groups and spatial conformation. In general, IR spectroscopy is not sensitive to the size of the molecules. Inspired by an already existing approach in NMR spectroscopy, the Amsterdam researchers now applied the principle of diffusion ordered spectroscopy to IR.

Here, the molecules present in a sample are separated based on their diffusion behavior prior to spectral analysis. IR-DOSY relies on the fact that the diffusion of a molecule is determined completely by its size—a concept that was first established by Albert Einstein in his 1905 classic paper on the Brownian motion of microscopic particles.

New experimental method IR-DOSY reveals molecular structure and size
Schematic representation of the IR-DOSY setup (left) and its operation (right). A sample solution (M) and pure solvent (S) are pumped into a channel (4 mm wide). The flow rates of the sample solution and solvent are the same, so at the midpoint of the channel an interface I establishes. When measuring the IR absorption in the solvent-filled half (the green bordered region), a time-dependent spectrum is observed in which the absorption peaks of the smaller S2 molecules (red) appear before those of the larger S1 molecules (blue). Credit: HIMS

The IR-DOSY spectrometer creates a spatially inhomogeneous distribution of solute molecules using a simple yet effective flow method that transports both the mixture and pure solvent into a sample chamber. After the stopping the flow, the solute molecules start to diffuse into the pure solvent region, at a rate that depends on their diffusion coefficient.

See also  Team develops new method to determine flaws in rubber
Powered by Inline Related Posts

The infrared absorption is measured at a position in the chamber where there was initially only solvent. As time progresses, the diffusing solute molecules start appearing in the IR beam. In this way, for all type of molecules the individual IR spectra are recorded at different moments in time, depending on their sizes. IR-DOSY thus produces a two-dimensional spectrum with the IR frequency along one axis and the diffusion constant (or equivalently, the size) along the other axis.

Proteins, polymers and nanoparticles

In their Angewandte Chemie paper, the researchers argue that although the separating power of IR-DOSY is less than that of typical chromatographic methods, it has the advantage that no prior knowledge is required of the chemical structure of the compounds present in the sample. The separating power might even be increased by adding an electrophoresis device to actively separate the species in the sample solution.

New experimental method IR-DOSY reveals molecular structure and size
Design of the IR-DOSY probe. Credit: UvA Technology Centre

Among the applications presented in the paper is the analysis of protein aggregates and fibrils. Here, IR-DOSY makes it possible to simultaneously investigate monomers, oligomers, and fibrils, which typically coexist in a sample. Polymers and plastic nanoparticles constitute another interesting field of research since samples usually contain many different molecules of many sizes.

The size-selectivity and structure-sensitivity could also render IR-DOSY useful in the pharmaceutical and biomedical domains. For instance it has potential to detect trace amounts of small molecules present in pharmaceutical products.

In the biomedical context, it could for instance be used to detect and structurally characterize low-molecular weight species in human blood serum. In all cases, the IR-DOSY analysis provides valuable information about the size or size distribution of the molecules or molecular aggregates in a sample.

See also  Researchers design soil-inspired multifunctional chemical system
Powered by Inline Related Posts

Megusta

Megusta

No Result
View All Result

Categories

  • Apple
  • Astronomy & Space
  • Biology
  • Chemistry
  • Data
  • DTC
  • Guides
  • How Tos
  • Marketing
  • Technology
Infodoc.info

Copyright © 2022 Infodoc.info. All right reserved.

Navigate Site

  • About Us
  • Contact
  • Disclaimers
  • Privacy Policy
  • Terms and Conditons

Follow Us

No Result
View All Result
  • Home
  • Astronomy & Space
  • Biology
  • Chemistry
  • DTC
  • Marketing
  • Technology
  • Stories
    • Guides
    • How Tos
    • Apple

Copyright © 2022 Infodoc.info. All right reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In