• Latest
  • Trending
  • All
Layered double hydroxides for oxygen evolution reactions

Layered double hydroxides for oxygen evolution reactions

October 30, 2022
Cloud-based government solutions

5 Benefits Of Cloud-Based Goverment Solutions

September 13, 2023
Cloud-based healthcare solutions

Cloud-based healthcare solutions: Important point definition

September 5, 2023
Cloud-based financial solutions

Cloud-based financial solutions: 8 Fascinating Benefits

August 25, 2023
Cloud-based supply chain solutions

Benefits of a Cloud-based Supply Chain Solutions

August 16, 2023
Cloud-based customer service solutions

Cloud-based Customer Service Solutions: Useful Reviews

August 8, 2023
Cloud-based marketing solutions

5 best Cloud-based marketing solutions

July 29, 2023
Best cloud-based inventory management solutions

Best cloud-based inventory management solutions

July 20, 2023
Cloud-based project management solutions best benefits

Cloud-based project management solutions: best benefits

July 18, 2023
Cloud-based CRM solutions best overview

Cloud-based CRM solutions: best overview

July 14, 2023
All best about Cloud-based ERP solutions

All best about Cloud-based ERP solutions

July 12, 2023
What is cloud integration solutions Best introduce

What is cloud integration solutions: Best introduce

July 11, 2023
The best cloud analytics solutions

The best cloud analytics solutions

July 6, 2023
Monday, December 11, 2023
  • Login
Infodoc.info
  • Home
  • Astronomy & Space
  • Biology
  • Chemistry
  • DTC
  • Marketing
  • Technology
  • Stories
    • Guides
    • How Tos
    • Apple
No Result
View All Result
  • Home
  • Astronomy & Space
  • Biology
  • Chemistry
  • DTC
  • Marketing
  • Technology
  • Stories
    • Guides
    • How Tos
    • Apple
No Result
View All Result
Infodoc.info
No Result
View All Result

Layered double hydroxides for oxygen evolution reactions

by Megusta
October 30, 2022
in Chemistry
0
Layered double hydroxides for oxygen evolution reactions

Newly achievements and expectations of layered double hydroxides toward efficient, stable, fast oxygen evolution reaction
The idealized structure of LDHs. Credit: Mingfei Shao, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing

To guide the design and synthesis of electrocatalysts toward highly efficient oxygen evolution reactions (OER), researchers from the Beijing University of Chemical Technology have summarized four common strategies to improve the OER performance of layered double hydroxides (LDHs) as well as identifying active sites for LDHs.

They published their work on Sep. 7 in Energy Material Advances.

“With the rising demand and consumption of fossil fuels, energy shortage and environmental pollution are becoming severe and unignorable,” said the corresponding author Mingfei Shao, professor with the State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing. “It is necessary to explore sustainable and renewable energy. Hydrogen, especially, is a new energy with splendid application prospects.”

Production of highly pure hydrogen can be achieved by electrochemical water splitting using the electricity transformed from renewable energies such as wind and solar. But as one of the half reactions, OER is a four-electron process, with a low-efficiency energy utilization, according to Shao.

Shao and his team focus on LDHs, a large type two-dimensional material. The wide tunability, molar ratios and interlayer anions, make it an outstanding catalysts for OER in alkaline medias.

“We summarized four common strategies applied to improve the OER performance of LDHs. Through these strategies, the overpotential of OER can be decreased, leading to a high efficiency of energy utilization,” Shao said. “Some works about the identification of active sites for LDHs are introduced. Revelation of reaction mechanism and active sites provide the theoretical guidance to design efficient electrocatalysts.”

The development and exploration of OER catalysts is mostly in the experimental stage at present, which cannot meet the standards for large-scale practical use. For instance, problems related to enlarging the size of the catalysts and maintaining stability during OER remain. Additionally, most reported preparation methods of LDH-based catalysts are complicated and time-consuming, which results in high costs and restricts their application, according to Shao.

See also  New potential from one-pot, one-step polymer synthesis
Powered by Inline Related Posts

“The recognition of reactive oxygen species such as oxygen species adsorbed by active sites on the surface of electrocatalysts and oxygen radical dispersed in the solution during OER still remains ambiguous due to the instable and unapparent existence of reactive oxygen species,” Shao said. “After recognizing these reactive oxygen species, how to take advantage of them for more efficient OER is still vital.”

“We hope this review can offer ideas to further identify the active sites for LDHs with the purpose of providing guidance to design more advanced electrocatalysts towards electrochemical water splitting,” Shao said.

Megusta

Megusta

No Result
View All Result

Categories

  • Apple
  • Astronomy & Space
  • Biology
  • Chemistry
  • Data
  • DTC
  • Guides
  • How Tos
  • Marketing
  • Technology
Infodoc.info

Copyright © 2022 Infodoc.info. All right reserved.

Navigate Site

  • About Us
  • Contact
  • Disclaimers
  • Privacy Policy
  • Terms and Conditons

Follow Us

No Result
View All Result
  • Home
  • Astronomy & Space
  • Biology
  • Chemistry
  • DTC
  • Marketing
  • Technology
  • Stories
    • Guides
    • How Tos
    • Apple

Copyright © 2022 Infodoc.info. All right reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In