• Latest
  • Trending
  • All
First radio-astronomy cryogenic receivers with all-metal 3D-printed RF components

First radio-astronomy cryogenic receivers with all-metal 3D-printed RF components

October 30, 2022
Cloud-based government solutions

5 Benefits Of Cloud-Based Goverment Solutions

September 13, 2023
Cloud-based healthcare solutions

Cloud-based healthcare solutions: Important point definition

September 5, 2023
Cloud-based financial solutions

Cloud-based financial solutions: 8 Fascinating Benefits

August 25, 2023
Cloud-based supply chain solutions

Benefits of a Cloud-based Supply Chain Solutions

August 16, 2023
Cloud-based customer service solutions

Cloud-based Customer Service Solutions: Useful Reviews

August 8, 2023
Cloud-based marketing solutions

5 best Cloud-based marketing solutions

July 29, 2023
Best cloud-based inventory management solutions

Best cloud-based inventory management solutions

July 20, 2023
Cloud-based project management solutions best benefits

Cloud-based project management solutions: best benefits

July 18, 2023
Cloud-based CRM solutions best overview

Cloud-based CRM solutions: best overview

July 14, 2023
All best about Cloud-based ERP solutions

All best about Cloud-based ERP solutions

July 12, 2023
What is cloud integration solutions Best introduce

What is cloud integration solutions: Best introduce

July 11, 2023
The best cloud analytics solutions

The best cloud analytics solutions

July 6, 2023
Thursday, September 28, 2023
  • Login
Infodoc.info
  • Home
  • Astronomy & Space
  • Biology
  • Chemistry
  • DTC
  • Marketing
  • Technology
  • Stories
    • Guides
    • How Tos
    • Apple
No Result
View All Result
  • Home
  • Astronomy & Space
  • Biology
  • Chemistry
  • DTC
  • Marketing
  • Technology
  • Stories
    • Guides
    • How Tos
    • Apple
No Result
View All Result
Infodoc.info
No Result
View All Result

First radio-astronomy cryogenic receivers with all-metal 3D-printed RF components

by Megusta
October 30, 2022
in Astronomy & Space
0
First radio-astronomy cryogenic receivers with all-metal 3D-printed RF components

First radio-astronomy cryogenic receivers with all-metal 3D-printed RF components
A 3D-printed corrugated horn (left). A Band 1 receiver with the all-metal 3D-printed corrugated horn installed (right). Credit: NAOJ, ASIAA

The NAOJ ALMA Project and Advanced Technology Center have successfully fabricated corrugated all-metal 3D-printed horns for the ALMA Band 1 receivers (Radio Frequency: 35–50 GHz).

Since around 2015, the NAOJ ALMA Project and the Advanced Technology Center have been studying the applications of additive manufacturing (AM), which produces three-dimensional objects by depositing, joining, and solidifying materials based on 3D models input to a control computer. Since astronomical receivers often have only one or two devices of each type per instrument and they require unique custom-made components, there is potential for effective use of additive manufacturing.

In the initial study, we selected different components for the ALMA Band 1 receiver, which were being prototyped at the time, and consulted with the distributor. Based on this initial study, we installed a metal 3D printer at the Advanced Technology Center in 2019 and started manufacturing corrugated horns for use in ALMA.

Corrugated horns collect electromagnetic waves from celestial objects after these have been focused by a large reflector antenna. Then, the waves collected by the horns are focused on detectors, the next components in the signal path. To be used in state-of-the-art radio astronomy receivers, it is not only necessary to satisfy the performance requirements for a corrugated horn, such as antenna beam pattern and frequency characteristics, but also to evaluate the metal material properties to ensure that the horn can be used without problems in the environment inside the receiver cartridge (temperatures around -250 degree Celsius and under vacuum conditions).

The best of these 3D-printed horns are being integrated onto the final ALMA Band-1 receiver production units and tested at low temperatures of around -250 degree Celsius at the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA) in Taiwan. The performance verification results show the horns meet ALMA specifications. The fully-tested receivers will be installed in ALMA, becoming the first ever cryogenic receivers that utilize all-metal 3D-printed components for (sub)mm-wave astronomy.

See also  Tree rings offer insight into devastating radiation storms
Powered by Inline Related Posts

Related research has been published in Journal of Infrared, Millimeter, and Terahertz Waves

Megusta

Megusta

No Result
View All Result

Categories

  • Apple
  • Astronomy & Space
  • Biology
  • Chemistry
  • Data
  • DTC
  • Guides
  • How Tos
  • Marketing
  • Technology
Infodoc.info

Copyright © 2022 Infodoc.info. All right reserved.

Navigate Site

  • About Us
  • Contact
  • Disclaimers
  • Privacy Policy
  • Terms and Conditons

Follow Us

No Result
View All Result
  • Home
  • Astronomy & Space
  • Biology
  • Chemistry
  • DTC
  • Marketing
  • Technology
  • Stories
    • Guides
    • How Tos
    • Apple

Copyright © 2022 Infodoc.info. All right reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In